Abstract
Objective: This study aimed to determine the antibiofilm activity of Mentha longifolia essential oil (EO) against biofilms forming on in-vitro implant surfaces.
Materials and Methods: Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans biofilms were used. Stainless steel and titanium samples were grouped as control, water diluted, no EO addition, and reducing amounts of EO doses. The six microorganisms included in the study were investigated to examine if there were differences between the doses on the implant surfaces. The eradication effect of the EO in samples investigated with electron microscope was classified as 0: none, 1: mild, 2: moderate, and 3: severe. The chemical composition of the EO was determined with gas chromatography.
Results: In terms of biofilm formation, no difference was observed between implant surfaces. While S. aureus and C. albicans were observed to be the most susceptible, P. aeruginosa was identified as the most resistant. According to gas chromatography, M. longifolia EO comprised 61.40% carvacrol and 0.28% thymol.
Conclusion: In vitro, M. longifolia EO was shown to be effective against gram negative/positive and fungal biofilms forming on the surface of stainless steel and titanium implants.
Cite this article as: Pazarci O, Tutar U, Kilinc S. Investigation of the Antibiofilm Effects of Mentha longifolia Essential Oil on Titanium and Stainless Steel Orthopedic Implant Surfaces. Eurasian J Med 2019; 51(2): 128-32.